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Abstract The electromagnetism-like method (EM) is a meta-heuristic algorithm utilizing
an attraction-repulsion mechanism to move sample points towards optimality in continuous
optimization problems. Traditionally, the EM uses two algorithms known as the original and
revised EMs. This paper presents a novel hybrid approach for EM by employing a well-
known local search, called Solis and Wets. To show the performance of our proposed hybrid
EM, a number of experiments are carried out on a set of well-known test problems and the
related results are compared with two forgoing algorithms.
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1 Introduction

In recent years, global optimization has become a rapidly developing field and many stochastic
search methods have been proposed in order to find a global optimum among many local
optima. One of these methods has recently been proposed by Birbil and Fang [1] and is
known as electromagnetism-like method (EM). This algorithm uses an attraction–repulsion
mechanism to move sample points toward optimality. This mechanism is similar to the elec-
tromagnetism theory for charged particles [2]. The EM applies to optimization problems with
continuous variables in the following form, as given in Eqs. 1 and 2.

Min
s.t.

f (x) (1)
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x ∈ [L , U ], (2)

[L , U ] := {x ∈ Rn |Lk ≤ xk ≤ Uk; k = 1, 2, . . . , n}
The original EM was revised by Birbil et al. [3] in order to make it convergent and after

some modifications in the original EM, they proved that their new revised EM exhibits global
convergence with probability one. Thus, there are two algorithms, namely the original and
revised EMs. The benefits of each algorithm are as follows:

• Original EM: The results of this algorithm are better and more satisfactory than the revised
algorithm (shown in Sect. 5).

• Revised EM: This algorithm exhibits global convergence with probability one, which is
proved in [3].

In this paper, we propose a novel hybrid approach by combining the revised EM with a
strong local search method, known as Solis and Wets [4]. The benefits of our new proposed
hybrid EM are as follows:

• The results obtained by this proposed hybrid EM are better and more satisfactory than
other two forgoing algorithms, the original and revised ones. We show this fact by apply-
ing our proposed hybrid EM to a number of test problems.

• Our proposed approach uses the modifications of the revised EM. Thus, it exhibits global
convergence with probability one, the same as the revised EM.

This paper is organized as follows: In Sect. 2, the original EM is reviewed. We review the
revised EM in Sect. 3 and then we propose our new hybrid EM approach in Sect. 4. In Sect. 5,
we compare the computational results of these three algorithms on a set of test problems.
Finally, the conclusions are presented in Sect. 6.

2 The original EM

Figure 1 shows the original EM, namely Algorithm 1.
The full description for each step of Algorithm 1 and their procedures are referred to [1];

however, we summarize each step to be more acquainted with this algorithm.

• Initialize: In this step, m sample points are selected at random from the feasible region,
which is an n-dimensional hyper-cube. Then, the objective function value (OFV) of each

ALGORITHM 1: EM(m, MAXITER, LSIT ER, δ)
m:   number of sample points
MAXITER: maximum number of iterations
LSITER:   maximum number of local search iterations

δ:                 local search parameter, δ ∈[0, 1]

Initialize()
iteration ←1
while iteration <MAXITER do
     Local(LSIT ER, δ)

F← CalcF( )
     Move(F)
      iteration ← iteration + 1
end while

Fig. 1 Pseudo code of the original EM
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sample point is computed. This step ends with m points identified, and the point that has
the best OFV is stored in xbest .

• Calculate force: In this step, a charged-like value is assigned to each point (qi ). The
charge of a point is computed according to the efficiency of the OFV of that point (points
with better OFV have more charge than other points). The charges are computed by Eq. 3.

qi = exp

[
−n × f (xi ) − f (xbest )∑m

k=1

[
f (xk) − f (xbest )

]
]

, i = 1, 2, . . . , m (3)

Then, the force between two points is computed using a mechanism that is similar to
electromagnetism theory for the charged particles. In this mechanism, the force exerted on a
point via other points is inversely proportional to the distance between the points and directly
proportional to the product of their charges and a point that has a better OFV (i.e., bigger qi )

attracts the other point and the point with the worse OFV repels the other. The computation
of this force is given by Eq. 4.

Fi
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
x j − xi

) qi q j∥∥x j − xi
∥∥2 , if f

(
x j

)
< f

(
xi

)
(

xi − x j
) qi q j∥∥x j − xi

∥∥2 , if f
(

xi
)

≤ f
(

x j
) , 1 = 1, 2, . . . , m (4)

At the end of this step, the vector of the total force exerted on each point from other points
is computed. This vector determines the direction of movement for corresponding point in
Step “move (F)” of Algorithm 1 as shown in Fig. 1.
Move points along the total force vector: In this step, points are moved along the total force
vector that is computed in the previous step. The movement is according to Eq. 5. In this
equation, λ the random step length is uniformly distributed between 0 and 1. RNG denotes
the allowed range of movement toward the lower or upper bound for the corresponding
dimension.

xi = xi + λ
Fi∥∥Fi

∥∥ (RN G) , i = 1, 2, . . . , m and 1 �= best (5)

Local search: This step is used to move the sample points toward the local minimums that
are near them. In this step, points are pushed toward the local valleys using a neighborhood
search procedure. The local search method used in this algorithm is very simple. Powerful
local search methods (e.g., Solis and Wets [4]) are not used in this algorithm. The procedure
of each step of the algorithm is referred to [1]; however, regarding the importance of the local
search step, we describe it in Fig. 2, namely Algorithm 2. For detailed description of each
step of the above algorithm, please see [1].

3 The revised EM

Birbil et al. [3] showed that the original EM may converge prematurely and end up with
a local minimizer in some problems. In order to preclude this premature convergence, they
applied some modifications in Step “CalcF( )” of the original EM (Algorithm 1) and proposed
a new revised EM, namely Algorithm 3, as explained in Fig. 3.

In the revised EM, one of the points other than the current best point is considered as
the “perturbed” point. This perturbed point, x p , is selected as the farthest point from the
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Fig. 2 Pseudo code of the local
search used in Algorithm 1

counter ←1

Length←δ(max k{uk − lk})
for i = 1 to m do

for k = 1 to n do

λ1 ←U (0, 1)
while counter <LSITER do

                  y ←xi

                   λ2 ←U (0, 1)
                 if λ1 > 0.5 then

                     yk ←yk + λ2 (Length)

else

yk ←yk −λ2 (Length)
end if
if f (y) < f (xi) then

                     xi ←y

                     counter ←LSITER − 1
end if

                     counter ←counter + 1

end while
end for

end for

xbest ←argmin{f (xi ),

A

i}

ALGORITHM 2: Local(LSIT ER, δ )
m: number of sample points
n:                 number of dimensions of the space
LSIT ER: maximum number of local search iterations

δ:                 local search parameter, δ ∈[0, 1]

ALGORITHM 3: Revised EM(m, MAXITER)
m: number of sample points
MAXITER:  maximum number of iterations
Initialize()             (the same as original EM)
iteration ←1
while iteration <MAXITER do

F ←CalcF( )   (with some modifications in original EM)
   Move(F) (the same as original EM)
   iteration ←iteration + 1

end while

Fig. 3 Pseudo code of Algorithm 3

current best point, xbest , in the current population. The force exerted to the perturbed point is
computed according to Eq. 6, in which parameter λ is uniformly distributed between 0 and 1.

F p
j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
x j − x p

) λq pq j∥∥x j − x p
∥∥2 , if f

(
x j

)
< f

(
x p)

(
x p − x j

) λq pq j∥∥x j − x p
∥∥2 , if f

(
x p) ≤ f

(
x j

) (6)
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In the revised EM, the direction of the component forces exerted to x p is also perturbed.
That is, if parameter λ is less than parameter ν ∈ (0, 1), then the direction of the component
force is reversed. After these modifications, Birbil et al. [3] showed that the perturbed point
have a chance to move to the possibly omitted parts of the feasible region and their new
revised EM exhibits global convergence with probability one.

Since the local search step does not effect on the convergence proof, Birbil et al. [3] omit-
ted this step from Algorithm 1 for analytic convenience of their convergence proof. Fig. 3
shows a pseudo code of the revised EM (Algorithm 3). For detailed description of each step
of this algorithm, please see [3].

4 Our novel hybrid EM

As we discussed earlier, there are two algorithms for electromagnetism-like method (EM).
Each algorithm has an important advantage as follows:

• Original EM: The results of this algorithm are better and more satisfactory than the revised
EM, as shown in Sect. 5 of this paper.

• Revised EM: This algorithm exhibits global convergence with probability one, in which
it is proved in [3].

In this section, we propose a novel hybrid EM by applying the revised EM embedded with
a powerful local search method, known as Solis and Wets. Our proposed hybrid EM has two
main advantages as follows:

• It is convergent, whose proof is the same as the revised EM given in [3]. The reason,
which we can use the same proof for our proposed algorithm, is because we use those
modifications in Step “CalcF( )” of the revised EM. These modifications explained in
Sect. 3 ensure when the number of iterations is large enough, regardless of the starting
population, there exists a nonzero probability to visit any subset of the feasible region and
one of the points in the current population moves into the έ-neighborhood of the global
optimum.

• The results reported by this algorithm are better and more satisfactory than the other two
forgoing algorithms, as shown in Sect. 5.

Figure 4 shows a pseudo code of our new proposed hybrid EM, namely Algorithm 4.
The local search method used in our proposed hybrid EM is known as the Solis and Wets

method. Solis and Wets [4] described a class of local and global search algorithms with proofs

ALGORITHM 4:  Our proposed hybrid EM (m, MAXITER, LSITER,   , MAXF, MAXS, expf , conf)

m:                                     number of sample points
MAXITER:                                    maximum number of iterations
LSIT ER:                                      maximum number of local search iterations
  , MAXF, MAXS, expf , conf:    local search parameters

Initialize()  (the same as original and revised EMs)
iteration ←1
while iteration <MAXITER do
    Local(LSITER,   ,  MAXF, MAXS, expf , conf) (with Solis and Wets method)

F ←CalcF( )         (the same as the revised algorithm)
   Move(F)              (the same as the original and revised EMs)
    iteration ← iteration + 1

end while

ρ

ρ

ρ

Fig. 4 Pseudo code of Algorithm 4
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ALGORITHM 5: Solis and Wets(LSITER, ρ, MAXF, MAXS, expf , conf )
LSITER:    maximum number of local search iterations
ρ:                 Local search parameter
MAXF:       maximum number of failures for decreasing ρ
MAXS:     maximum number of Successes for increasing ρ
expf:            Exponential factor for increasing ρ
conf:           Contraction factor for  decreasing ρ

     choose initial point x
     set b (bias vector with dimensionality of search space) to 0
     while LSITER not exceeded and ρ not too small do

for each dimension i of the solution space do
               add deviate Di = normal deviate with mean bi and standard deviation ρ

End for 
If new solution is better and new solution is feasible then

               failures =0
               successes = successes +1

b = 0.4D + 0.2b
     else 

for each dimension I do
                     add –Di to the original solution

End for
If new solution is better and new solution is feasible then

                       failures =0
                       successes = successes +1

b = b - 0.4D
else

                      failures = failures +1
                      successes = 0

b = 0.5b
End if

End if
If successes >= MAXS then

                failures = 0
                successes = 0

ρ= expf * ρ
End if
If failures >= MAXF then

                failures = 0
               successes = 0

ρ= conf * ρ
End if

     End while

Fig. 5 Pseudo code of Algorithm 5

of convergence in the limit of infinite search time. This local search method used in this paper
is a randomized hill climber with an adaptive step size. Each step starts with a current point x .
A deviate d is chosen from a distribution whose standard deviation is given by a parameter ρ.
If x − d or x + d is better (and also a feasible solution), a move is made to the better point
and a “success” is recorded. Otherwise, a “failure” is recorded. After several successes in
a row, ρ is increased to move more quickly. After several failures in a row, ρ is decreased
to focus the search. Additionally, a bias term is included to give the search momentum in
directions that yield success. Figure 5 shows a pseudo code for our implementation of the
Solis and Wets local search, namely Algorithm 5.

It is worth noting that either x − d or x + d may fall outside the feasible solution space,
especially when a sample point is near to the boundaries of the solution space and ρ has a big
value. In this case even if the new solution (x −d or x +d) is a better solution, the movement
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is not made to that point and a “failure” is recorded. Recording a failure leads to reducing
the parameter ρ so that the local search domain is reduced and the chance of feasible x − d
or x + d is increased in the next iterations.

An important feature of this type of local search is that it does not rely on gradient infor-
mation. So, it does not have the difficulties of calculating the gradient vector. However, after
some iteration, the algorithm can estimate the appropriate direction toward the local optima
and can continue the search in that direction (by using the bias vector). In other words, the
Solis and Wets mechanism estimates the direction of movement based on the information
obtained on the previous iterations, and then guide the search in that direction.

Another important feature of the Solis and Wets local search is its adaptive length of
movement in each step. It means that this local search estimates if the current point is far
from the local optima or near it. This estimation is based on the information of the previous
iterations. If this method estimates that the current point is far from the local optima, the
length of movement is increased. On the other hand, if this method estimates that the current
point is near to the local optima, the length of movement is decreased and the search is
focused on the nearer areas.

5 Computational results

We apply these three algorithms (i.e., Algorithms 1, 3, and 4) on a set of well-known test
problems drawn from [5,6]. The global minimum value for all six functions, as shown in
Table 1, is zero. We use each test problem with two different space dimensions (n = 2 and
n = 10). Each of three above-mentioned algorithm is run for n = 2 in 5 s and for n = 10
in 30 s on a Pentium-IV 3 GHz PC. These algorithms are coded in VB and they are available
upon request.

We run each algorithm 20 times for each function. Then, we record the average and
minimum of the 20 obtained results (i.e., the average of results and the best result). It is
worth noting that the number of local searches in each iteration of the original EM and our
proposed hybrid EM is 50 times applied to all points.

In Table 1, it is clear that when the dimension of space is 2 (i.e., n = 2), the original
EM and our proposed hybrid EM return the optimal results for all instances even in such a
short time (5 sec.). However, the revised EM returns the optimal result in some problems and
results that are near to the optimum for other problems.

As shown in Table 2, when the dimension of space increases (n = 10), our new pro-
posed hybrid EM returns the best results, and the original EM returns better results than the
revised EM.

Table 1 Computational results obtained for n = 2 in 5 s

Function name Original EM Revised EM Proposed hybrid EM

Best Average Best Average Best Average

Griewank 0.000 0.000 0.008 0.039 0.000 0.000
Levy 0.000 0.000 0.000 0.000 0.000 0.000
Rastrigin 0.000 0.000 0.002 0.038 0.000 0.000
Rosenbrock 0.000 0.000 0.000 0.003 0.000 0.000
Sum Squares 0.000 0.000 0.000 0.000 0.000 0.000
Zakharov 0.000 0.000 0.000 0.000 0.000 0.000
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Table 2 Computational results obtained for n = 10 in 30 s

Function name Original EM Revised EM Proposed hybrid EM

Best Average Best Average Best Average

Griewank 0.039 0.079 0.561 0.764 0.028 0.075
Levy 0.000 0.000 0.008 0.021 0.000 0.000
Rastrigin 0.000 0.199 2.176 5.754 0.000 0.006
Rosenbrock 0.014 0.717 3.521 9.879 0.011 0.077
Sum Squares 0.000 0.000 0.028 0.068 0.000 0.000
Zakharov 0.000 0.000 0.000 0.000 0.000 0.000

An important conclusion obtained from Tables 1 and 2 is the importance of the local search
procedure in the electromagnetism- like method (EM). Even a simple local search used in
the original EM can improve the quality of results very well; while the revised EM returns
the worse results due to the lack of any local search.

Despite the superior performance of our proposed hybrid EM, the simple local search of
the original EM has an important advantage that cannot be ignored and that is its simple
structure. Comparing the Solis and Wets local search used in our proposed hybrid EM, the
simple local search of the original EM has only two parameters (LSITER and δ), which
makes it easier in implementation and faster for the user in order to find the appropriate
parameters for a given function.

6 Conclusion

We have proposed a novel hybrid approach combining an electromagnetism-like method
(EM) with a strong local search method, known as Solis and Wets. To show the efficiency of
our proposed hybrid EM, a number of experiments are carried out and the associated results
are compared with the results taken from the literature. This comparison shows that the results
of our hybrid EM outperform two original and revised EMs considered in this paper. We have
also described another advantage of our proposed hybrid EM. This advantage is using the
modifications of the revised EM. Thus, it can be proved that our hybrid EM exhibits global
convergence with probability one, in which the proof is given in [3].
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